

# **RDA012**

12 Bit 1.1 GS/s DAC

REV-DATE PD1-2412 FILE DS\_0008PD1-2412 DS



# **RDA012**

# 12 Bit 1.1 GS/s DAC

#### **Features**

- ♦ 12 Bit Resolution
- ♦ 1.1 GS/s Sampling Rate
- ♦ 10 Bit Static Linearity
- ♦ 66dB SFDR with Fclk = 1.1GHz, Fout = 370MHz and 100MHz Bandwidth
- ♦ ECL Compatible Data Inputs
- ♦ Differential Analog Output
- ♦ Input code format: Offset Binary
- Output Swing: 600 mV with 50 Ω
   Termination to GND
- ♦ Differential ECL or Sinusoidal Clock Input
- Reference Output/Input Pin for Accurate Full-Scale Adjustment.
- ◆ -5.2V Power Supply
- ♦ 32 Lead QFP package



Figure 1- Functional Block Diagram

## **Product Description**

The RDA012 is a high performance 12 Bit digital to analog converter (DAC) with a data update rate over 1.1 GS/s. Fabricated in an 80 GHz  $f_T$  GaAs HBT process, the RDA012 has been optimized for ultra-high speed applications, achieving 66dB of spurious-free dynamic range (SFDR) at 1.1 GS/s, with Fout of 370MHz and 100MHz of bandwidth. The DAC utilizes a

segmented current source to reduce glitch energy and to achieve high linearity performance. For better dynamic performance, the DAC outputs are internally terminated with  $50\Omega$  resistance. It outputs a nominally full-scale current of 12mA when terminated with external  $50\Omega$  resistors.

## Ordering information

| PART NUMBER | DESCRIPTION                     | CAUTION                 |     |
|-------------|---------------------------------|-------------------------|-----|
| RDA012-QP   | 12 BIT 1.1GS/s DAC, QFP Package | DEVICE SUSCEPTIBLE TO   |     |
| RDA012-DI   | 12 BIT 1.1GS/s DAC, DIE         | DAMAGE BY ELECTROSTATIC |     |
| EVRDA012-QP | RDA012 Evaluation Board         | DISCHARGE (ESD)         | 100 |



# Absolute Maximum Ratings

| Supply Voltages VEEs to GND            | 6 V to 1 V |
|----------------------------------------|------------|
| RF Input Voltages CLKIP, CLKIN         | 3 V to 1 V |
| Digital Input Voltages DI<0:11>        | 6 V to 1 V |
| Output Termination Voltages OUTP, OUTN | 1 V to 1 V |
|                                        |            |



# **DC Electrical Specification**

Test Conditions (see notes for specific conditions): Room Temperature; VEEA = -5.2V; VEED = -5.2V; VREF = -2V; VECL = -1.3V; Clock: 1.1GHz, 0.6Vpp Differential; Outputs Terminated Into 50  $\Omega$  to 0V.

|     | PARAMETER                   | SYMBOL            | CONDITIONS, NOTE               |    | TYP | MAX | UNITS |
|-----|-----------------------------|-------------------|--------------------------------|----|-----|-----|-------|
| 1.0 | DC TRANSFER FUNCTION        |                   |                                |    | •   |     |       |
| 1.1 | Differential Nonlinearity   | DNL               | Maximum of Absolute Value      |    | 4   |     | LSB   |
| 1.2 | Integral Nonlinearity       | INL               | Maximum of Absolute Value      |    | 4   |     | LSB   |
| 2.0 | TEMPERATURE DRIFT           |                   |                                |    |     |     |       |
| 2.1 | Warm-up Time                |                   | After Power-up                 |    |     | 30  | S     |
| 3.0 | CLOCK INPUT (CLKIP, CLKI    | N)                |                                |    |     |     |       |
| 3.1 | Input Resistance            | $Z_{CIN}$         | Resistance to VTT              | 45 | 50  | 55  | Ω     |
| 3.2 | Input Capacitance           | $C_{CIN}$         |                                |    | 250 |     | fF    |
| 4.0 | DIGITAL INPUTS (DI<0:11>)   |                   |                                |    |     |     |       |
| 4.1 | Input Resistance            | $R_{DIN}$         |                                |    | 10K |     | Ω     |
| 5.0 | ANALOG OUTPUTS (OUTP, OUTN) |                   |                                |    |     |     |       |
| 5.1 | Swing                       |                   | Single Ended Into 50Ω to GND   |    | 600 |     | mVpp  |
| 6.0 | REFERENCE (VREF)            |                   |                                |    |     |     |       |
| 6.1 | Input Resistance            | R <sub>VREF</sub> |                                |    | 560 |     | Ω     |
| 6.2 | Reference Voltage           | $V_{VREF}$        | Output from Internal Reference |    | -2  |     | V     |
| 7.0 | POWER SUPPLY REQUIREMENTS   |                   |                                |    |     |     |       |
| 7.1 | Power Dissipation           | Р                 |                                |    | 1.8 |     | W     |

## **AC Electrical Specification**

Test Conditions (see notes for specific conditions): Room Temperature; VEEA = -5.2V; VEED = -5.2V; VREF = -2V; VECL = -1.3V; Clock: 1.1GHz, 0.6Vpp Differential; Outputs Terminated Into 50  $\Omega$  to 0V.

|     | PARAMETER                        | SYMBOL   | CONDITIONS, NOTE                     | MIN | TYP | MAX | UNITS |
|-----|----------------------------------|----------|--------------------------------------|-----|-----|-----|-------|
| 8.0 | DYNAMIC PERFORMANCE <sup>1</sup> | (note 1) |                                      |     |     |     |       |
| 8.1 | SFDR                             | SFDR 1   | 52MHz Input <sup>1</sup>             |     | 66  |     | dB    |
| 8.2 | SFDR                             | SFDR 2   | 252MHz Input <sup>1</sup>            |     | 54  |     | dB    |
| 8.3 | SFDR                             | SFDR 3   | 340MHz Input <sup>1</sup>            |     | 54  |     | dB    |
| 8.4 | SFDR                             | SFDR 4   | 52MHz Input, 100MHz BW <sup>1</sup>  |     | 76  |     | dB    |
| 8.5 | SFDR                             | SFDR 5   | 340MHz Input, 100MHz BW <sup>1</sup> |     | 66  |     | dB    |

<sup>&</sup>lt;sup>1</sup> Items 8.1, 8.2, 8.3 were measured using full Nyquist. Items 8.4 and 8.5 were measured using a 100MHz band centered at Fout.



## **Operating Conditions**

|      | PARAMETER                                   | SYMBOL    | CONDITIONS, NOTE               | MIN   | TYP   | MAX   | UNITS |  |
|------|---------------------------------------------|-----------|--------------------------------|-------|-------|-------|-------|--|
| 9.0  | CLOCK INPUTS (CLKIP, CLKIN)                 |           |                                |       |       |       |       |  |
| 9.1  | Amplitude                                   | $V_{CPP}$ |                                | 400   | 600   | 800   | mV    |  |
| 9.2  | Common Mode Voltage                         | $V_{CCM}$ |                                | -0.8  | -1.5  | -2    | V     |  |
| 9.3  | Maximum Frequency                           | $F_{MAX}$ |                                | 1100  |       |       | MHz   |  |
| 10.0 | DIGITAL INPUTS (DI<0:11>)                   |           |                                |       |       |       |       |  |
| 10.1 | Input High Voltage                          | $V_{IH}$  | $V_{ECL} = -1.3V$              | -1.15 | -0.95 | -0.3  | V     |  |
| 10.2 | Input Low Voltage                           | $V_{IL}$  | $V_{ECL} = -1.3V$              | -2.2  | -1.75 | -1.45 | V     |  |
| 11.0 | TERMINATION VOLTAGE (VTT)                   |           |                                |       |       |       |       |  |
| 11.1 | Reference Voltage                           | $V_{TT}$  | Termination Voltage for CLKI   |       | -2    |       | V     |  |
| 12.0 | REFERENCE (VECL)                            |           |                                |       |       |       |       |  |
| 12.1 | Reference Voltage                           | $V_{ECL}$ | Reference Voltage for DI<0:11> | -2    | -1.3  | -0.5  | ٧     |  |
| 13.0 | REFERENCE (VREF) <sup>2</sup> (note 2       | 2)        |                                |       |       |       |       |  |
| 13.1 | Reference Voltage                           | $V_{REF}$ |                                | -2.5  | -2    | -1.2  | V     |  |
| 14.0 | POWER SUPPLY REQUIREM                       | IENTS     |                                |       |       |       |       |  |
| 14.1 | Analog Supply Voltage                       | VEEA      |                                | -5.45 | -5.2  | -4.95 | V     |  |
| 14.2 | Digital Supply Voltage                      | VEED      |                                | -5.45 | -5.2  | -4.95 | V     |  |
| 15.0 | OPERATING TEMPERATURE <sup>3</sup> (note 3) |           |                                |       |       |       |       |  |
| 15.1 | Case Temperature                            | Tc        | Measured at Bottom Plate       | -15   |       | 85    | °C    |  |
| 15.2 | Junction Temperature                        | Tj        |                                |       |       | 125   | °C    |  |

The DAC core current is generated from an internal reference that is both temperature and supply dependent. The Internal reference can change up to ±2% by changing the supply voltage within the specified range. It can also change up to ±5% according to operating temperature changes. The change in temperature and supply can be minimized by using a precision external voltage reference source connected to VREF.

The part is designed to function with a junction temperature up to 125°C. For the best performance, operation within the specified temperature range with a proper heatsink attached to the device is recommended. The heatsink should be attached to the bottom of the PCB, on a metal pad connect by thermal vias to the metal pad where the part is soldered.



# Pin Description and Layout

| P/I/O | PIN                                   | NUM. | NAME     | FUNCTION                                         |
|-------|---------------------------------------|------|----------|--------------------------------------------------|
| Р     | 19, 20, 21, 22                        | 4    | VEEA     | -5.2V Analog Power Supply                        |
| Р     | 13, 27                                | 2    | VEED     | -5.2V Digital Power Supply                       |
| Р     | 10, 16, 17, 18, 23, 24, 25            | 7    | GND      | Ground                                           |
| Р     | Bottom Plate                          | -    | GND      | Ground                                           |
| I/O   | 26                                    | 1    | VREF     | -2V Reference Voltage                            |
| ı     | 31                                    | 1    | VECL     | Digital Input Reference                          |
| ı     | 29                                    | 1    | VTT      | CLKI Clock Termination Voltage                   |
| ı     | 28                                    | 1    | CLKIP    | Clock Input                                      |
| I     | 30                                    | 1    | CLKIN    | Clock Input                                      |
| I     | 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12 | 12   | DI<0:11> | DI <i> Is Digital Bit i Input. MSB is bit 11</i> |
| 0     | 15                                    | 1    | OUTP     | Analog Output                                    |
| 0     | 14                                    | 1    | OUTN     | Analog Output                                    |



Figure 2 - RDA012-QP pinout (top view).



# Pad Layout



Figure 3 - RDA012 pad layout. Die size is 2650 x 2740 µm.



## Theory of Operation

For best dynamic and static performance, the RDA012 DAC employs 4 Bit segmentation. The ECL compatible 12 Bit digital data inputs are latched by master-slave flip-flops immediately after the input buffer to reduce the data skew. The 4 MSB data bits are decoded into thermometer code by a two-stage decoding block, and the 8 LSB data bits are transported through the delay equalizer block. The digital data are then synchronized again by a second master-slave flip-flop to reduce the switching glitch. The decoded 4 MSB data drive 15 identical current switches, and the 8 LSB data drive 8 current switches. The output nodes from the LSB current switches are connected to the analog output through an R-2R ladder to

generate the binary output. The RDA012 DAC provides output terminated at 50Ω, illustrated in an equivalent circuit in Figure 5. The output fullscale voltage follows the relationship V<sub>FS</sub> = An internal reference circuit with  $0.3xV_{RFF}$ approximately -10dB supply rejection is integrated on chip for application convenience, and the reference pin is provided for monitoring and for bypass purposes. To band-limit the noise on the reference voltage, the reference pin should be bypassed to the GND with capacitance > 100pF. The VREF pin can also be used to override the internal reference with an accurate, temperature-compensated external voltage reference.

## **Equivalent Circuit**



Figure 4 - Data input circuit



Figure 5 - Output circuit



Figure 6 – Clock input circuit



Figure 7 - VREF circuit



## Signal Description

#### HIGH SPEED INPUT CLOCK.

The RDA012 DAC high-speed clock input is differential and can be driven from typical ECL circuits. Also a differential sinusoidal clock can be used. The CLKIP and CLKIN inputs, are internally terminated with  $50\Omega$  to VTT which should be connected to a well decoupled -2.0V supply. Since the DAC's output phase noise is directly related to the input clock noise and jitter, a low-jitter clock source is ideal. The internal clock driver generates very little added jitter ( $\sim$ 100fs).

#### DATA INPUT.

The data inputs are single ended ECL compatible. VECL is used as a voltage reference for the data input buffers (Figure 4).

#### ANALOG OUTPUT.

The outputs OUTP and OUTN should both be connected though a  $50\Omega$  resistor to ground. This will give a full-scale amplitude of 0.6 volt (both outputs must be terminated), 1.2 volt differentially. The output common mode can be changed by terminating the load resistors to a different voltage. However, the device is optimized to perform best when connected to a voltage between 0 and 1 volt. For reliable

operation, the output termination voltage should not exceed 3 volts.

#### REFERENCE.

VREF is provided for added control of the full-scale amplitude output. The internal reference circuit is designed to provide -2.0V, which can change up to  $\pm 5\%$  as the supply voltage and/or operating temperature changes. If the user prefers accurately control the output full-scale signal, an external voltage reference with low output impedance to override the internal reference should be used. The output full-scale voltage follows the relationship  $V_{FS} = 0.3xV_{REF}$ . Note that the RDA012 DAC is optimized to have the best performance with a reference voltage of -2.0V. The output resistance of the reference node is  $560~\Omega~\pm 10\%$ .



# **Typical Operating Circuit**



Figure 8 - RDA012 typical operating circuit using the internal voltage reference.



# Typical Performance





Figure 9- RDA012 INL

Figure 10 - RDA012 DNL





Figure 11 - Spectrum at Fclk=1GHz, Fout=250MHz

Figure 12 - Spectrum at Fclk=1GHz, Fout=333MHz



## Package Information

The package is a 32 lead metal ceramic base, glass sidewall Quad Flat Pack (QFP) with a heatsink slug

on the package's bottom. The leads are gull-winged formed.





Figure 13 - RDA012-QP package, dimensions shown in inches (mm).



Figure 14 - RDA012-QP footprint, dimensions shown in inches (mm).